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Abstract 

The main contribution of this paper is the general framework, 

termed multi-core Beamformer Particle Filter (multi-core 

BPF), for solving the ill-posed EEG inverse problem. The 

method combines a particle filter (statistical approach) for 

reconstruction of the brain source spatial locations and a 

multi-core Beamformer (deterministic approach) for 

estimation of the corresponding dipole waveforms in a 

recursive way The intuition behind is to benefit from the 

advantages of both deterministic and statistical inverse 

problem solvers in order to improve the estimation accuracy 

without increasing the complexity and the computational cost.  

Our simulations show that the proposed algorithm can 

reconstruct reliably the few most active (the dominant) brain 

sources that have generated the registered EEG 

measurements. The main advantage of the method is that in 

contrast to conventional (single-core) Beamforming spatial 

filters, the proposed Multi-core Beamformer explicitly takes 

into consideration potential temporal correlation between the 

dipoles. 

 

1 Introduction 

Brain source reconstruction is the process of localization and 

tracking of the brain electrical activity of the localized 

sources. The reconstruction of the neuronal activity can be 

very useful for example during brain surgery of patients, or 

for Parkinson’s disease, where the neural dipole tracking can 

identify and locate the exact source of the electrical nerve 

signals and thus improve the deep brain stimulation treatment. 

The brain source reconstruction techniques are most generally 

divided into [1] i) the imaging approaches, where the neural 

activity is described by a dense set of dipoles and ii) the 

parametric approaches, which employ a small number of 

equivalent current dipoles. The imaging approaches are by far 

more researched because they provide a detailed map of the 

brain neuronal activity. However, it usually takes more than 

one imaging modality, often using invasive techniques, to 

obtain a map of the brain neuronal activity. As a consequence, 

the imaging approaches require invasive as well as 

computationally involved procedures.  

The parametric approaches, on the other hand, are less 

studied. Their main advantage is that they approximate 

aggregated event related potentials; and thus represent the 

neural activity at a macro level. First, deterministic source 

reconstruction was proposed, based on the 

principal/independent component analysis or blind source 

separation techniques [1]. It is only recently, and due to the 

increase in the available computational power, that statistical 

parametric methods, such as the Kalman filter and 

nonparametric methods such as Particle Filters, seem feasible 

as brain source localization tools, [2], [3]. However, these 

techniques are still at a very initial explorative stage and 

further investigations are required. While both deterministic 

and statistical parametric approaches have their advantages, 

hybrid solutions seem to provide reasonable compromise 

between complexity and computational resources. The  hybrid 

beamformer-particle filter approach for estimation of brain 

sources based on EEG measurements is the focus of this 

paper and recent work by the same authors [4], [5].  

The hybrid method we propose is inspired by the work of  

Mohseni    a     [6]. However, in [6] a single-core Beamformer 

(BF) is used. The main limitation of the single-core BF is that 

it assumes the estimated dipoles are not correlated. This 

assumption is not true in general. In Brookes et. a    [7  an  

 i akar    a    [8], a dual-core Beamformer is proposed to 

consider two simultaneously activated sources into a single 

spatial filter. Inspired by the methodology of Diwakar, we 

propose an adaptive Beamformer with multiple constraints 

(Multi-core Beamformer) by adding null-constraints in the 

potentially correlated source locations. The proposed 

algorithm simultaneously solves for the inner brain source 

locations and their waveforms. This is in contrast to 

techniques which first find the source positions and then 

estimate the source si na s  [9]. 

  is  a  r is or ani    as  o  o s   n     ion  2,     P  

 ra   ork is o   in        ion  3 formulates the EEG state-

space model in order to apply the particle filter, based on 
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physiological specifications. The Beamforming as a spatial 

filter is in ro      in s   ion          ro os       o       i-

 or    a  or  r Par i     i   r      i- or   P     or 

r   rsi    s i a ion o      so r    o a ions an   a   or s is 

 ai  o   in     ion      n     ion  6 the Multi-core BPF is 

applied to simulated an  r a       a a an   o  ar    i   

a   rna i   so   ions      ion  7 concludes the paper. 

2. The Particle Filter 

Many problems in statistical signal processing, time-series 

analysis and control can be stated in a state-space form. A 

system transition function describes the prior distribution of a 

hidden Markov process according to the model: 

 

  .1 ,k k k kf x x w    (1) 

 

Here, kf  is the system transition function and kw  is a zero-

mean, white noise sequence of known pdf, independent of 

past and current states. Measurements kz  are available at 

discrete times k, relating to the state vector kx  via the 

observation equation:  

 

   ,,k k k khz x v     (2) 

 

where kh  is the measurement function and kv is another zero-

mean, white noise sequence of known pdf, independent of 

past and present states and the system noise. 

Within a Bayesian framework, all relevant information about 

the state vector, given observations up to time k, can be 

obtained from the posterior distribution   ,1:k kp x z  where 

 .1: 1 , ,k kz z z  This distribution may be obtained 

recursively in two steps: prediction and update. Suppose that 

the posterior distribution at the previous time index 1k  , 

  ,1 1: 1k kp  x z is available. Then, using the system transition 

model, we can obtain the prior pdf of the state at time k as 

follows: 

 

      .1: 1 1 1 1: 1 1k k k k k k kp p p d     x z x x x z x  (3) 

When a measurement kz , at time step k, is available, the prior 

is updated via Bayes rule: 

 

  
   

 
,

1: 1

1:

1: 1

k k k k

k k

k k

p p
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




z x x z

x z
z z

 (4) 

 

where the denominator is a normalizing factor and the 

conditional pdf of kz  given kx  is defined by the 

measurement model in (2). 

The recurrence equations in (3) and (4) constitute the solution 

to the Bayesian recursive estimation problem. If the functions 

kf  and kh  are linear and the noises kw  and kv  are Gaussian 

with known variances, then an analytic solution to the 

Bayesian recursive estimation problem is given by the well-

known Kalman filter. In the EEG source localization problem, 

however, the measurement function kh  is non-linear, or, in 

other words, the EEG measurements kz  are non-linear 

functions of the source locations kx . 

In order to deal with the non-linear and/or non-Gaussian 

realities, two main approaches have been adopted: parametric 

and non-parametric. The parametric techniques are based on 

extensions of the Kalman filter by linearizing non-linear 

functions around the predicted values. The non-parametric 

techniques are based on sequential Monte Carlo methods and 

particularly the particle filter (PF). Unlike the Kalman filter, 

which propagates the mean and covariance of the Gaussian  

posterior density, the PF uses a set of random samples, called 

particles, to estimate the posterior distribution of the state. 

Specifically, the posterior is approximated by a set of 

weighted particles (hence the name particle filter) as: 

 

    ,( ) ( )
1:

1

N
l l

k k kk k
i

p  


 x z x x   (5) 

 

Here, N is the total number of particles, 

( ) ( ) ( )

1
/

Nl l l
k k kl

w w


   is the normalized weight for particle l 

at time k. Ideally, the particles are required to be sampled 

from the true distribution  1:k kp x z , which is not available. 

Therefore, another distribution, referred to as the importance 

distribution, or the proposal distribution 1(x | x , y )n n nq  , is 

used. Theoretically, the only condition on the importance 

distribution is that its support includes the support of the 

posterior distribution. In practice, the number of particles is 

finite and the importance distribution should be chosen to 

approximate the posterior distribution. The importance 

weights  are given by: 

 

 
   

 






 ,

( ) ( ) ( )
1

( ) ( )
1

( ) ( )
1:1 ,

l l l
k k k k

l l
k k

l l
kk k

p p
w w

q

z x x x

x x z
 (6) 

 

 For instance, if the importance distribution is given by the 

prior density,    ( ) ( ) ( ) ( )
1:1 1,l l l l
kk k k kq p x x z x x ,  then Eq. (6) 

reduces to:  

 

   .
( ) ( ) ( )

1
l l l

kk k kw w p z x    (7) 

 

Given a discrete approximation to the posterior distribution, 

one can then proceed to a filtered point estimate such as the 

mean of the state at time k: 
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 .
( ) ( )

1

ˆ
N

l l
k k k

l




x x     (8) 

 

The main advantage of the particle filter is that no restrictions 

are placed on the functions kf  and kh , or on the distribution 

of the system and measurement noise. Moreover, the 

algorithm is quite simple and easy to implement. Notably, it 

can be implemented on massively parallel computers, raising 

the possibility of real time operation with very large sample 

sets. 

3. The EEG State-Space Model 

In order to apply the particle filtering, the state-space model 

of the EEG source localization problem has to be defined. 

Assuming that the brain electrical activity has been originated 

by a number of active dipoles, the EEG signal kz  from zn  

sensors at time k (the forward EEG model) can be expressed 

by [1]: 

 

   ,k k k k z L x s v    (9) 

 

where ,kx  is the state vector that represents the dipole 

geometrical positions at time k. For example, for two dipoles, 

the state vector is 

 

,1 1 1 2 2 2, , , , ,
t

k k k k k k kx y z x y z   x    (10) 

 

L is the lead field dipole matrix at time k, ,ks  is the vector of 

the 3D source signal and kv  is a white Gaussian noise with 

variance 2
v . From Equation (9), the likelihood of each 

measurement can be obtained:  

 

 
   

,

1( ) ( )
( , ) exp

2
k

t

k k k z k k k
k k k

  
  
 
  

z L x s R z L x s
z x s

      (11) 

 

where 
kz

R  is the covariance matrix of the measurement 

vector ,kz    no  s “ ro or iona   o”  The goal is to 

estimate ,kx given kz . Assuming a lack of a priori 

knowledge of the dipole location, the state transition is 

assumed to be a random walk in the source localization space:  

 

 1k k k x x w ,    (12) 

 

where kw  is a Gaussian white noise with variance 
2 .w  

Thus, the complete state-space model of the dipole source 

localization is the following: 
 

 
 

state transition model

observation model.

1k k k

k k k k

  


 

x x w

z L x s v
  (13) 

 

In model (13), the source waveforms ks  will be estimated by 

the beamforming method discussed in the next section.  

4. Multi-core Beamforming for Correlated 

Source Localisation 

Beamforming (BF) approach was successfully applied in a 

variety of neuroimaging studies [10], [11]. In the present 

work, we want to estimate the dipole waveforms ks  using 

only EEG measurements. The idea is to build a spatial filter 

that would pass signals from the location of interest with a 

unit gain, while nulling signals from elsewhere (i.e., it is 

insensitive to activity from other brain regions). The BF filter 

consists of weight coefficients that, when multiplied by the 

electrode measurements, give an estimate of the dipole 

moment at time k, i.e., 

 

 ,t
k kW zs     (14) 

 

where Wt
 is the weighting matrix.  

Among a number of criteria for choosing the optimum 

weights, the linearly constrained minimum variance (LCMV) 

BF provides an adaptive alternative in which the spatial filter 

is optimized with respect to the measured data, [10]. The 

objective is to optimize the BF response with respect to a 

prescribed criterion, so that the output ks  contains minimal 

contribution from noise and interference. The nulling effect is 

achieved by minimizing the variance of the filter output 

subject to a unit gain constraint at the desired location. The 

constrained optimization problem can be expressed as: 

 

 

argmin  

subject to 

k

t
z

t
k

Tr  
 



W

W W R W

W L x I.

   (15) 

 

The optimal solution can be derived by constrained 

minimization using Lagrange multipliers, 

 

       .
1

1 1

k k

t

z k k z k


   

  
W = R L x L x R L x  (16) 

The conventional (single-core) Beamformer approach, 

described above, has an important limitation when spatially 

distinct yet temporally correlated sources are present in the 

EEG signal, [10]. The main assumption of the beamformer 

method is that the activity at the target location is not linearly 

correlated with activity at any other location. However, 

several studies of functional connectivity have suggested that 

temporal correlation relates to the communications among 

cortical areas. For example, such high correlations occur 

during evoked sensory responses in which the sensory 

information is transmitted to both left and right auditory 
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cortices simultaneously, which result in almost perfectly 

correlated activities in the two hemispheres. Correlated 

activities can also be observed in symmetric regions of the 

left and right hemispheres of the motor cortex.  

Different modifications of the single-core BF attempt to 

compensate for this limitation. The temporal correlation 

, ( )i jM f  of a pair of  ,i j  dipoles is quantified by the 

magnitude-squared cross spectrum , ( )i jS f
 

divided by the 

power spectra of both dipole moments , ( )i iS f  and , ( ) :j jS f   

 

 .

2

,

,
, ,

( )
( )

( ) ( )

i j

i j
i i j j

S f
M f

S f S f
    (17) 

 

The correlation is bounded between 0 and 1, where 

, ( ) 1i jM f   indicates a perfect linear relation between 

dipoles id  and jd  at frequency f.  

Dynamic imaging of coherent sources (DICS) is proposed in 

[12] where the spatial filter weighting matrix explicitly takes 

into account the estimated correlation quantified by Eq. (17). 

The authors conclude that high coherence results in a large 

error in the estimation of the dipole location. Low signal to 

noise ratio (SNR) additionally deteriorates the estimation of 

spatially close and temporally correlated dipoles. Correlated 

dipoles can be reliably localized if the distance between them 

is sufficiently high. DICS computes the cross spectral 

densities for any given location (from a dense grid of points) 

and all pair combinations of grid dipoles. 

An alternative solution for dealing with the problem of 

correlated source activities is to include the other source 

location in the forward model to obtain a bilateral beamfomer. 

This idea has been further developed into dual-core 

beamformers allowing the correlated sources in any location. 

For example, Brookes et. al. [7] proposed a spatial filtering 

technique by linearly combining source lead fields. Recently, 

Diwakar et al. [8] have further developed this idea by 

proposing a new dual-core beamformer that incorporates the 

leadfield vectors of two simultaneously activated sources into 

a single spatial filter.  

Inspired by the methodology of Diwakar, we adopted an 

adaptive beamformer based on the LCMV algorithm with 

multiple constraints (multi-core beamformer) by adding null-

constraints in the potentially correlated source locations. The 

optimization problem is solved using the method of Lagrange 

multipliers with multiple constraints: 

 

 
 

 

 

min  

subject to 1

2

t
x

t

t

t
n

Tr  
 







W
W R W

W L d I

W L d 0

W L d 0.

   (18) 

 

The conventional BF is characterized with high 

computational costs due to the scanning solution over a three 

dimensional source grid with thousands of nodes (potential 

source locations). The BF modifications to account for 

correlated sources increase even more the computational 

burden because of the additional cross correlation estimation 

for all pair combinations of grid dipoles. Instead, the 

combined solution proposed in this work (multi-core BF and 

PF) has the advantage of considering temporal source 

correlation in the framework of relatively small number of 

particle-like sources, but whose level of correlation is 

unknown a priori. The price to pay for using multiple 

constraints is that the number of degrees of freedom decreases 

and the beamformer becomes less adaptive to other unknown 

sources. 

5. The Multi-core Beamformer-Based Particle 

Filter 

The Multi-core Beamformer Particle Filter (Multi-core BPF) 

is a hybrid (statistical-deterministic) framework for 

reconstruction of correlated source. This is a recursive 

procedure that first estimates the locations of temporally 

correlated brain sources (using particle filter) and then 

estimates their corresponding waveforms (using multi-core 

beamforming spatial filter). The algorithm is summarized 

below. 

Multi-core Beamformer Particle Filter for temporally 

correlated source localization 

1) Initialization 

a) ,0k  for ,1, ,l N  where N denotes the total 

number of particles. 

Generate samples  ( )
00 ~l px x  and set initial 

weights .
( )
0 1/l N   

b) for ,1,2,k   

2) Prediction step 

for ,1, ,l N  generate samples according to the state 

transition model in Eq. (12): 

( ) ( ) ( )
1

l l l
k k k x x w  where  ( ) 2~ ,l

wk w I0   

3) Multi-core Beamforming 

a) Compute the lead field matrix  ( )l
kL x  for each 

predicted dipole at step 2 by solving the Maxwell 

equations [1].  

b) Find the optimal spatial filter weights using Eq. (18). 

Consider the location of each estimated dipole 

  1, ,id i M  as the targeted direction and the 
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other 1M   dipoles as correlated with id  to compute 

the weighted vector associated with it. 

c) Compute the source waveforms 
( )l
ks  according to Eq. 

(14). 

4) Measurement update 

Evaluate the particle weights: 

a) for ,1, ,l N  on the receipt of a new measurement, 

compute the weights 

    .
( ) ( ) ( ) ( ) ( )

1 , ,l l l l l
kk k k k kw w s

 
  

 
z x L x  (19) 

The likelihood   ( ) ( ) ( ), ,l l l
k k k ks

 
 
 
z x L x  is calculated 

using Eq. (11). 

b) for ,1, ,l N  normalize the weights, 

 .
( ) ( ) ( )

1
/

Nl l l
k k kl

w w


     (20)  

5) Evaluate the posterior mean 1:k kE  
 
x z as the estimate of 

the state at iteration k 

 .
( ) ( )

1:

1

ˆ
N

l l
k k k k k

l

E 


  
  x x z x   (21) 

6) Compute the effective sample size: 

   .
2

( )

1
1/

N l
eff kl
N 


   

7) Selection step (resampling): 

if :eff threshN N multiply/suppress samples  ( )l
kx with 

high/low weights ,
( )l
k in order to obtain N new random 

samples approximately distributed according to the 

posterior state distribution. 

8) Stopping criteria: 

  ,1ˆ ˆk kx x where   is a fixed threshold 

 

6. Simulation Results 

The proposed approach is assessed by simulation experiments 

assuming the EEG signals are generated by a limited number 

of focal sources. Three-shell spherical head model was 

created based on the following assumptions: 

The head model consists of three concentric spherical shells 

with the enclosed space among them representing the scalp, 

skull and brain. The model dimensions are scaled to a realistic 

human head with an outer shell radius of 10 cm, scalp radius 

of 9.2 cm and skull radius of 8.7 cm.  

Each layer is considered as homogeneous and isotropic, i.e., 

the conductivity is constant and with no preferred direction. 

The conductivity values used for the head model were 

selected from studies on electrical impedance tomography 

aiming to create an electrical conductivity map of a volume: 

scalp 0.33 S/m, skull 0.0165 S/m and brain 0.33 S/m. 

The distribution of the electrodes on the scalp follows the 

standard 10/20 International system with an array of 30-

electrodes: Fp1, AF3, F7, F3, FC1, FC5, C3, CP1, CP5, P7, 

P3, Pz, PO3, O1, Oz, O2, PO4, P4, P8, CP6, CP2, C4, FC6, 

FC2, F4, F8, AF4, Fp2, Fz, Cz. 

The coordinates are defined with respect to a reference frame 

whose origin is located at the centre of the sphere: the x-axis 

pointing in the direction of the right-ear, the y-axis pointing in 

the front of the head and the z-axis is taken to be vertical. 

 

White noise was added to the generated EEG signals 

representing the effect of external sources not generated by 

brain activity, but by some disturbance (e.g., movements of 

muscles). The noise power was defined for different signal-

to-noise ratios (SNR). The SNR is defined in the sensor 

domain as the total power of the signal divided by the total 

power of the noise added to the signal. The total searchable 

source space is simulated with a fixed and uniform dipole-

grid with 5-mm spacing in each direction. The leadfield 

matrix is computed off-line for each grid dipole. A grid of 

21012 dipoles is used in the simulations.  

6.1 Dipole localisation results 

Sinusoidal waveforms with amplitudes 0.1 and frequencies 10 

Hz and 15 Hz are assumed to be the brain signals originating 

from the two dipoles ( 1d  and 2d ). For the initial state vector, 

500N  samples are randomly generated from a normal 

distribution in the interval 0 min( ),max( )D D  x  with 

 ., ,j j j jD d x y z  
 

 

The particle filter finds the brain source coordinates 

1 1 1 2 2 2, , , , ,x y z x y z   x  as described in Section 5. In the 

simulations, the sources are randomly generated and, 

therefore, they may or may not coincide with the dipole grid 

that describes the head model. We consider three cases: (i) the 

two brain sources are located on the dipole grid, (ii) only one 

brain source coincides with a dipole grid, and (iii) none of the 

brain sources is located on the dipole grid. Figures 1, 2 and 3 

show the absolute estimation error for the three cases with all 

simulations running for 200 iterations.  

Observe that the absolute estimation error with respect to 

each space coordinate  , ,x y z  converges to zero after a few 

iterations if the original brain sources are located on the 

dipole grid of the head model. Otherwise, the estimation of 

the localization of non-grid-dipoles may end with a small 

steady-state error. The proposed algorithm guarantees a zero 

estimation error when the head grid model becomes infinitely 

fine. 

6.2 Multi-core BPF versus single-core BPF and full PF 

In order to validate the Multi-core BPF, we compare it with 

the two alternative techniques, single-core BPF and the full 
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PF, from which the proposed method originated. The 

experiments were performed with the following control 

conditions: the neural activity from a-pair of correlated dipole 

sources with 95% ( 0.95M  ) and 30% correlation 

( 0.3M  ) were simulated as sinusoidal base waves with 

amplitudes 0.1 and frequencies 3Hz and 5Hz over 0.5 sec. 

The performance was evaluated at low SNRs (3dB and 8dB). 

The target dipoles (ground truth) were taken from the 

predefined grid at the following  zyx ,,  coordinates: 

 1 : 0.0116,0.0767,0.019d m  and  

 2 : 0.0116, 0.0767,0.0095d m   with a dominant direction 

of propagation along the x-axis for 1d  and along the y-axis 

for 2d  defined by the following vectors:  1 : 0.8,0.1,0.1dir  

and  2 : 0.1,0.8,0.1 .dir   

 

 
Figure 1: Absolute estimation error of the dipole locations 

when the two brain sources are located on the dipole grid. 

 

 

Figure 2: Absolute estimation error of the dipole locations 

when only the second brain source coincides with a dipole 

grid. 

 

 
Figure 3: Absolute estimation error of the dipole locations 

when none of the brain sources is located on the dipole 

grid. 

 

First, the effect of the dipole correlation (expressed by M) on 

the beamformer was evaluated (see Figs. 4 and 5).  Note that 

the simulation of dipole correlation changes the sine shape of 

the base signal. The single-core BF and the multi-core BF 

provide very similar estimations for uncorrelated dipoles. The 

higher the correlation level ( 0.95M  ), the more biased are 

the estimations of the single-core BF as can be seen in Figure 

6. This is due to the filter weight matrix that was computed 

assuming the source time-courses come from uncorrelated 

generators.  
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Figure 4: Source waveform estimation by beamforming for 

uncorrelated dipoles: the original (dotted line) and the 
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estimated curve (bold line) for dipole 1 (left) and dipole 2 

(right) using the Single-core BF (top plots) and the Multi-

core BF (bottom plots) with SNR 3 .dB  
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Figure 5: Source waveform estimation by beamforming for 

0.3M   (low correlation): the original (dotted line) and 

the estimated curve (bold line) for dipole 1 (left) and 

dipole 2 (right) using the Single-core BF (top plots) and 

the Multi-core BF (bottom plots) with SNR 3 .dB  
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Figure 6: Source waveform estimation by beamforming for 

0.95M   (high correlation): the original (dotted line) and 

the estimated curve (bold line) for dipole 1 (left) and 

dipole 2 (right) using the Single-core BF (top plots) and 

the Multi-core BF (bottom plots) with SNR 3 .dB  

 

Table 1 summarizes the spatial mean squared localization 

errors (MSE) under varying SNR and varying correlation 

levels M. The MSE is obtained from the space distance 

     
2 2 2

ˆ ˆ ˆx x y y z z
 

     
 

 in millimetres between the 

true  , ,x y z  and the estimated sources  ˆ ˆ ˆ, ,x y z  across 10 

Monte Carlo simulations. Even from very noisy EEG data 

(SNR 3 ),dB without any prior assumption for the true 

location of the dipoles, the Multi-core BPF provides 

estimation within 3-5 mm error distance. The single-core BPF 

can achieve competitive accuracy, but only for dipoles with 

low or no temporal correlation. The full PF is less sensitive to 

dipole correlation and noise. The PF estimation error is 

relatively high. However, if the number of the particles is 

higher (only 500 in the present scenario), it has the potential 

to recover better the dipole location. The price to be paid is 

the significant amount of memory and computational power 

particularly when the number of estimated dipoles increases.  

Figure 7 visualizes the normalized weights computed over the 

recursive PF estimation for some of the iterations k. Note that, 

based on the current likelihood value at each iteration, only 

few of the particles (from 500N  particles in total) are 

pointed out as the most probable candidates for the location of 

the dipoles. This reduces significantly the computational 

efforts associated with the exhaustive search over the 

complete dipole grid conducted by the full beamforming 

approach or other deterministic parametric methods for brain 

source localization.  

 

Method 

SNR 3dB  

Dipole 1 Dipole 2 

0.95M   0.3M   0.95M   0.3M   

Full PF 8.2 8.3 7.3 7.6 

Single-core 

BPF 
12.2 3.95 9.97 3.3 

Multi-core 

BPF 
3.4 5.42 1.8 4.41 

Method 

SNR 8dB  

Dipole 1 Dipole 2 

0.95M   0.3M   0.95M   0.3M   

Full PF 6.9 6.7 5.8 5.3 

Single-core 

BPF 
11.5 3.3 8.7 3.1 

Multi-core 

BPF 
2.8 4.1 1.5 3.6 

 

Table 1: Spatial mean squared localization errors (MSE) in 

millimetres under varying SNR and correlation levels M. 
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Figure 7: Normalized weights (Eq. 20) computed over the 

recursive PF estimation. 

 

7. Conclusions 

This paper proposes a general framework, termed multi-core 

Beamformer Particle Filter (multi-core BPF), for solving the 

ill-posed EEG inverse problem. The method combines a 

particle filter (statistical approach) for estimation of the 

spatial location and a multi-core beamformer (deterministic 

approach) for estimation of temporally correlated dipole 

moments in a recursive framework. The intuition behind it is 

to benefit from the advantages of both deterministic and 

statistical inverse problem solvers in order to improve the 

estimation accuracy without increasing the complexity and 

computational cost.  

Our simulations show that the proposed algorithm can 

reconstruct reliably the few most active (the dominant) brain 

sources that have generated the registered EEG 

measurements. The main advantage of the method is that it 

explicitly takes into consideration potential temporal 

correlation between the dipoles.  
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